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INTRODUCTION 

The successful development of an autonomous 3-D vision system would be of 

considerable value and importance to future national defense related systems 

as well as numerous domestic applications.  Within the U.S. Army, applications 

for such a vision sytem would include autonomous navigation of various Army 

vehicles and weapon systems, ammunitions supply, autoloading systems, and 

target recognition. 

Numerous approaches are currently being investigated for 3-D systems. 

One such potentially successful approach involves analysis of range data as 

might be obtained from a laser rangefinder.  One of the authors of this 

report, C. N. Shen, has been conducting studies since 1968 at Rensselaer 

Polytechnic Institute on application of an autonomous laser rangefinder vision 

system for a Mars rover vehicle (see Reference 1 for a summary of this work). 

It is assumed herein that a matrix of systematically measured ranges Is 

obtained for a given field of view.  This matrix can then be treated 

analytically for purposes of object location, navigation, and scene analysis. 

Our current study deals with a small aspect of the overall problem.  The 

specific problem considered Is edge detection of objects on a sloped, possibly 

wavy plane.  An example might be the location of boulders, rocks, craters, 

sharp hills, trees, etc In the autonomous navigation of a vehicle over 

terrain.  The procedure used for edge detection Is called RES (rapid 

1Shen, G. N., "Autonomous Navigation for Mobile Robot Vehicles Over Hilly 
Terrain Using Rangefinder Measurements," Proc Robot Intelligence and 
Productivity Conference, Wayne State University, Detroit, MI, November 18-19, 
1983. 



estimation scheme) by Sonalkar, Sanyal, Kim, and others (refs 2-4).  RES is 

basically a decision-directed estimation approach in which the range matrix 

which contains both measurement and system noise is processed one column (or 

row) at a time.  One column, for example, of the range matrix is a series of 

range measurements obtained at different incrementally varied elevation angles 

(3^) for fixed azimuth angle (6j)» as shown in Figure 1.  This vector is 

analyzed by stepping through each range measurement element one at a time and 

using a combination of (1) Bayesian decision criteria to detect impulses 

(edges of objects), (2) impulse estimation if an edge is detected, and (3) 

Kalman filtering if no edge is detected.  The system model used for the Kalman 

filter is a plane with fixed or adaptive slope. 

The particular numerical procedure presented herein involves a single 

term state vector (range) with adaptive procedures for handling objects on a 

sloped plane.  This results In a procedure nearly twice as fast as approaches 

using a two-term state vector (range and slope) as used by Kim et al (ref 4). 

The main goals of the work presented in this report are to (1) study 

approaches for minimizing false alarms given a minimum size object to be 

detected, and (2) determine specifications for accuracy of instrumentation, 

such as a laser rangefinder, required to detect given object sizes. 

2Sonalkar, R. V. and Shen, C. N., "Mars Obstacle Detection by Rapid Estimation 
Scheme from Noisy Laser Rangefinder Readings," Proc of the Milwaukee 
Symposium on Automatic Computation and Control, Wisconsin, April 1975, pp. 
291-296. 

3Sanyal, P., "Rapid Estimation of States by Detecting Unknown Impulse Inputs 
at Unknown Times," PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY, 
University Microfilms, Ann Arbor, MI, 1973. 

^Kim, C. S., Marynowski, R. C, and Shen, C. N., "Obstacle Detection Using 
Stabilized Rapid Estimation Scheme With Modified Decision Tree," Proc of 
JACC, Philadelphia, PA, October 1978. 



SINGLE TERM RAPID ESTIMATION SCHEME 

In this and the next section a summary of the RES procedure is presented. 

For more detailed discussion of the Kalman filter, impulse estimation and 

Bayes' risk analysis, the reader is referred to References 3, 5, and 6. 

Range measurements are assumed available in the form of a matrix Z in 

which the element z^* represents the measured ranges for elevation angle 6^ 

and azimuth angle 0^, as shown in Figure 1.  In the RES procedure only one 

column (row) of this matrix is processed at a time and edges of objects, if 

any, detected.  In this report only column processing will be considered where 

it is assumed that 6^ is arbitrarily fixed.  Each column is processed in a 

similar manner, and the outline of object edges inferred from the results of 

the column processing.  Row processing can also be accomplished for more 

object detail. 

For a given column, processing begins with the point at the highest 

elevation (lowest value of 3 In Figure 1).  Each subsequent 3 point is then 

incrementally considered.  At a given point a Bayesian decision criterion is 

used to determine if a jump in actual over expected range is indicated.  If 

not, Kalman filtering Is used to obtain a better state estimate at the next 

point, and so on.  If an impulsive jump is detected, then the measured range 

at the next point becomes the starting point for continued processing.  After 

-"Sanyal, P., "Rapid Estimation of States by Detecting Unknown Impulse Inputs 
at Unknown Times," PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY, 
University Microfilms, Ann Arbor, MI, 1973. 

5Kalman, R. E., "A New Approach to Linear Filtering and Prediction Problems," 
Trans, of ASME, Journal of Basic Engineering, March 1980, pp. 35-45. 

"Sage and Melsa, Estimation Theory With Applications to Communications and 
Control, McGraw-Hill, New York, 1971, Chapter 5, "DecisJhoiTfheoryr5 



an edge detection the Kalman filter Is reset to Ignore previous data.  The 

entire column of ranges Is processed In this manner storing location and 

values of recorded jumps. 

Figure 1.  Top and side view of a rangeflnder. 

If xj represents the true range, then z^ (the j subscript Is dropped from 

now on since It remains fixed for a given column processing) Is given by: 

zl = xl + vi (1) 

in which v^ is added measurement noise assumed to be white and Gaussian 

distributed with mean zero and variance R. 

The equation of state for this problem is given by: 

xi+l = FiXi + wi + 6lk uk (2) 

in which 



sinS-L + tanni cos B^ 
p. for column processing; (3) 

sin3i+i + tanni cos3i+i 

ni - slope of the plane (terrain) near point i; 

w^ = system noise such as terrain noise which is 

assumed white and Gaussian distributed with 

mean zero and variance Q; and 

u^ = impulsive jump in the range at point k caused 

by presence of an object. 

In Eq. (2), x1+i represents the range for elevation angle 3i+i, and can 

be estimated from information prior to point 1+1,  In the computer algorithm 

TI-L is determined adaptively using ranges near and prior to point i. 

Standard Kalman filtering is used to obtain estimates of the ranges from 
A 

the measured data if no impulsive input is detected where Xi and Pi are the 

estimate and error covariance at point i: 

Prediction: 
(^) 

xi+l = FiXi 

Mi+i = Fi2pt + Qi (5) 

= variance of the error in x^+i 

Kalman Gain: 

Correction: 

K1+1 = Mi+1(Mi+1+Ri+1)" 1 (6) 

xi+l " xi+l + Ki+l(zi+l~xi+l) (7) 

P1+1 = (l-Ki+1)
2Mi+1 + Ki+1

2Ri+1 (8) 

For the case in which no prior data is included such as when first 

starting the column processing or immediately after a jump is detected, then 

x^ and Pi are estimated directly as zj and R^. 



DETECTION OF OBJECT EDGES 

In stepping through each point i of the range vector, a decision must be 

made as to whether or not an impulse (e.g. object edge) is present between 

points i and i+1.  This is accomplished by setting up a number of hypotheses 

and then applying a decision rule to determine which hypothesis is most 

probable, given the data. Essentially, the measured ranges are statistically 

compared to predicted ranges assuming no impulse.  The hypotheses considered 

are listed as follows: 

Hi - impulsive input exists between points i and i+1 

H2 - impulsive input exists between points i+1 and i+2 

H3 - impulsive input exists between points i+2 and i+3 

H^ - no input exists between points i and 1+3 

The motivation for considering the states at the three forward points is to 

improve reliability of the decision process (see Reference 4 for discussion of 

this approach). 

A Bayesian decision rule (ref 6) is then applied to the hypotheses and 

the hypothesis with lowest Bayes' risk determined.  If H^ is not chosen, then 

the range at i+1 is estimated using Eqs. (4) through (8) and the entire 

decision process is repeated at this next point. 

^Kim, C. S., Marynowski, R. C, and Shen, C. N., "Obstacle Detection Using 
Stabilized Rapid Estimation Scheme With Modified Decision Tree," Proc. of 
JACC, Philadelphia, PA, October 1978. 
^Sage and Melsa, Estimation Theory With Applications to Communications and 
Control, McGraw-Hill, New York, 1971, Chapter 5, "Decision Theory." 



If Hi is chosen, the location of the detected edge is stored along with 

other pertinent information.  Then the range estimates x1+1 and Pi+i are set 

equal to the measured range zi+1 and R, respectively, and the process is 

reinitiated and continued until the entire vector of ranges is processed. 

The conditional probabilities of the measured data given the hypotheses 

are used to compute the Bayes' risk B£ for the Ith  hypothesis: 

4 
84 = I Pk<Uknz|Hk) ; £ = 1,2,3,4 (9) 

k=l 

in which p^     = prior probabilities for hypothesis k; 

c£k    = cost associated with choosing Hj^ when 

actually % is correct; 

F(Z|Hk) = conditional probability density of 

range measurements Z given H^ is true. 

In Eq. (9) the hypothesis % is chosen which minimizes Bayes' risk B£.  The 

densities FCZlH^) are given as follows: 

3      1 1 
F(Z/Hk) = TT —----T;; "*{- -JM (10) 

n=l /2i IW^I1'2      2 

in which 

Jkn  = (zi+n " xki+n)(W
k
i+n)"

1(zi+n-xki+n) 

W^i+n = Mki+n + Ri+ri 

x^i+n = predicted range at point i+n based on 

cumulated information at point 1+n-l for 

the kth hypothesis. 

In Eq. (10) if an impulse is assumed to have occurred just prior to point i+n, 

then x^i+n is set equal to Zi+n-     For more details on the derivation of Eq. 



(10), see Reference 3. 

SIMULATION STUDIES OF RES 

The object detection procedure described In the previous sections has 

been extensively tested using simulation techniques.  In these simulation 

studies, artificial scenes are created using computer routines.  A. range 

matrix is generated which contains known measurement and system noise using a 

random number generator.  In these studies, the RES procedure worked quite 

efficiently in locating the edges of various kinds of objects setting on or 

within a given sloped plane.  The main problems encountered were difficulties 

in (1) minimizing false alarms where a false alarm occurs when a detection is 

made at a point where no object input exists; (2) fixing the Bayes' prior 

probabilities and cost factors in Eq. (9); and, (3) determining effect of 

parameters on minimum detectable object size.  These problems are Interrelated 

and were studied using Monte Carlo simulation in which the main goal was to 

characterize the minimum object size that can be detected as a function of 

model parameters. 

False Alarm Rate 

Kim et al (ref 4) in their studies of the RES procedure, which used a 

two-term state vector (range and slope), fixed the Bayes' parameters.  They 

then minimized false alarms by adding artificial system noise covarlance to 

^Sanyal, P., "Rapid Estimation of States by Detecting Unknown Impulse Inputs 
at Unknown Times," PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY, 
University Microfilms, Ann Arbor, MI, 1973. 

^Kim, C. S., Marynowski, R. C, and Shen, C. N., "Obstacle Detection Using 
Stabilized Rapid Estimation Scheme With Modified Decision Tree," Proc of 
JACC, Philadelphia, PA, October 1978. 



their model.  This is a common ad hoc procedure for handling unmodeled inputs 

(ref 7). 

For our study, a series of Monte Carlo runs was conducted using the RES 

procedure described by Eqs. (1) through (10) assuming a flat plane containing 

no objects.  In this case any detection experienced would be a false alarm. 

The parameters that were varied included the addition of artificial noise 

covariance to both the system and measurement noises R and Q and the Bayes' 

parameters. 

A number of assumptions were made to reduce the 20 Bayes' parameters in 

Eq. (9) to a single parameter.  The only hypothesis that has any consequence 

at a given point i Is H^.  If H^ is accepted as true, then a detection is 

concluded and recorded with the filtering-decision procedure being reinitiated 

at the next point.  If H2, H3, or H4 is accepted as true, nothing is done 

other than continue the filtering procedure to the next point.  It will be 

assumed then that the prior probabilities and costs for H2, H3, and H4 are 

equal but different from %: 

p = p2 = p3 = p4 ,t p1 (11) 

The cost parameters c^ associated with choosing H^ when actually % is 

correct are assumed to be: 

cj^ = 0 for £ = k 

= ci for k. = 1 and A = 2, 3, and 4 

= c for £ * k, k = 2, 3, and 4, £ - 1, 2, 3, and 4        (12) 

^Jazwinski, A. H., Stochastic Processes and Filterijig Theory, Academic Press, 
New York, 1970, Chapter 8. 



The values of p, p^, c, and ci  affect the RES procedure only as a ratio given 

by: 

pc 
(13) b - -P^ 

Pici 

In the flat plane case with no objects present, the range matrix was 

generated assuming only measurement noise of mean zero and covariance R. 

Artificial noise can be added to the RES procedure in multiples of this R. 

That is, R(RES) = R + fR*R and Q(RES) = fQ*R, where the actual Q is assumed 

zero in these particular trials. 

Some of the results of the Monte Carlo runs are given in Table I.  As can 

be seen from Table I, there are various combinations of fjj, fg, and b that 

will yield a minimal number of false alarms for the cases considered.  The 

next question is which combination is optimum with respect to the minimum size 

detectable object. 

TABLE I.  FALSE ALARM RATE AS A FUNCTION OF RES PARAMETERS 

Artificial 
Noise                       | 

Factors           Bayes'       False Alarm 
Ratio     I  Rate, per   | 

fR       fo           b       |  1000 points   1 
1      1              1               1 

0         0            2            54.3     | 
3.5          25.0 

1          |      5      |     11.0     | 
1          |     10      |     3.4 
1          1     20      j     1.3      ' 
1          I     50      |      .3      | 

100             0 

1         0            3.5          3.0 
1      5      |      .3      | 

1          |     10      |      0       | 
5                     2      10: 

Oil           5           3.4 
1         |     10      |      .3      | 
1               20      |      0       I 

0         5           10             0 

10 



Minimum Detectable Object Size 

In order to study the minimum size Impulse that can be detected, a number 

of additional Monte Carlo runs were conducted assuming the field of view to be 

a plane containing a series of steps, both up and down, with varying heights 

from run to run.  The Important statistic In these runs Is the residual from 

point 1 to 1+1.  The residual Is defined as 

^1+1 - zi+1 " xi+i (1*) 

where ri+i represents the difference in the measured data (z±+i)  and the 

predicted range obtained from filtered data up to point 1.  If no Impulsive 

input exists at 1+1, then r^+i  should contain only measurement noise and would 

be relatively small.  In the Monte Carlo trials, an estimate was made of the 

residual above which the RES procedure resulted in a detection on the average. 

The distribution of detections about this average appeared quite sharp from 

the results obtained in this study.  In most cases, once the residuals passed 

the calculated average, a detection was always obtained.  Also, the calculated 

average residual was found to be Independent of the actual range, but 

dependent on measurement noise covarlance R, artificial noise factors f^ and 

fq, and the Bayes' parameter b. 

Table 11 lists the results obtained for the residual threshold estimates 

given as multiples of aR = /R.  The results were obtained for different 

combinations of fR, fq, and b which yielded zero or low false alarm rates as 

given in Table I. 

From the results presented in Table II, the most efficient approach to 

minimizing detectable object size in terms of minimizing false alarms is to 

adjust the Bayesian decision criteria.  The least efficient approach is to 

11 



artificially add system noise covariance. Also, further decrease in the 

residual threshold can be obtained if a few false alarms can be tolerated. 

TABLE II.  MINIMUM DETECTABLE THRESHOLD LEVELS FOR RESIDUALS 

Artificial 
Noise 

Factors 
1 

1" 

Bayes' 
Ratio 

b 

False Alarm 
Rate 

Per 1000 

1             1 

Residual 
Threshold 

fR 
fQ Estimate*, rt t 

0 0 100 0 3.4 

1 0 10 0 3.5 

5 0 2 0 3.8 

0 1 20 0 4.2 

0 5 10 0 5.4 

0 0 10 3.4 2.6 

1 o  i 3.5 3.0 3.0 

0 1 5 3.4 2.9 

♦Multiples of measurement noise std. dev. o^ 

Instrument Accuracy Requirements 

The results obtained in the previous sections can be used to estimate the 

accuracy of instrumentation, such as a laser rangefinder, required to detect 

objects of a given size at a given range.  The required maximum instrument 

noise o^^ is a function of the residual threshold estimate rt as given in 

Table II, the height H of the Instrument above the ground, the range p, and 

the minimum object height y,. to be detected (see Figure 2): 

yt((H-yt)2 + P
2
)
1/2 

rt(H-yt) 

aRmax (15) 

12 



Equation (15) Is derived by considering only geometric relationships of the 

various quantities Involved as shown In Figure 2.  As an example, let H = 2 

meters, p = 20 meters, and yt  ■ 0.05 meters.  From Table II, choose rt to be 

3.4 (fR = fq = 0.0, b = 100).  This gives a required o^max  = 0.15 meters. 

Rmax 

-CV 

Figure 2.  Geometrical relationship of residual r to model parameters. 

CONCLUSIONS 

The RES procedure presented as Eqs. (1) through (10) provides a fast and 

efficient computer technique for object detection based on range data measure- 

ments.  The results presented show minimum object size that can be detected as 

a function of false alarm rate, Bayesian decision criteria, measurement noise 

level, and covarlances of artificial noise levels.  Results Indicate that the 

13 



most efficient approach to minimizing false alarms in terms of minimizing 

detectable object size is to adjust the Bayeslan decision criteria.  The least 

efficient approach is to artificially add system noise covariance. 

Much work remains to be done on assessing available laser rangefinders to 

determine if achievable accuracies against non-standard targets with varying 

reflectivity fall within required accuracies.  The required accuracies can be 

roughly estimated from the results presented in this report given the required 

range and minimum object sizes to be detected. 

14 
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